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Introduction 
 
It is an experiential fact that macroscopic systems are dissipative - they converge to states that are 
macroscopically at an equilibrium, and eventually produce statistics of a stationary distribution. On the 
other hand, the fundamental physics behind the microscopic state of these systems are necessarily 
conserving of energy, and non-dissipative. How the convergent statistics arise from a non-dissipative 
system is therefore of physical interest. The ergodic behavior of nonlinear systems is relevant to statistical 
mechanics, to explain the unpredictable, macroscopically dissipative, and statistical behavior of 
deterministic systems, and whether or at what rate equipartitions of energy, or other statistical 
distributions among possible states are produced. Equipartition of energy is assumed in many statistical 
mechanics proofs of the thermodynamic behavior of systems, and these arguments depend on the ergodic 
behavior of the systems. 
 
The ergodic hypothesis is a property attributed to the behavior of nonlinear ordinary differential equation 
systems. This property was originally proposed by Ludwig Boltzmann during the 1870's.1 

 
For energy preserving dynamic systems, the state of the system is confined to a level surface of the total 
system energy. In linear systems, the time evolution of the system, while complex, can be factored into 
the time-evolution of the normal modes. For nonlinear systems, the time evolution of the system can be 
considerably more complex, as no independently evolving normal modes exist which can be 
superimposed linearly. The trajectory of the nonlinear systems were historically assumed to have the 
property that they "invade the energy surface densely", meaning that for arbitrarily fine resolution, the 
long-time averaged probability of finding the system at any point of the energy surface is nonzero. The 
fraction of time spent in or near any part of the energy surface is proportional to the surfaces Liouville 
measure.1 
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Linear, Hamiltonian, time-independent systems have eigenvalues which are entirely imaginary. These 
correspond to non-dissipative systems, which preserve the energy of their motion. Each normal mode 
evolves in time in an orderly fashion.  The energy in each normal mode is independently conserved, and 
therefore such systems cannot exhibit the ergodic property. Because the energy is conserved in each mode 
independently, the trajectories of the system can inhabit at most an N-dimensional surface in the 2N 
dimensional state-space, or the 2N-1 dimensional energy surface. For time independent systems, this 
takes the form of a hyper-torus in configuration space: the topological product of the circular paths taken 
by each set of normal-mode position  and momentum coordinates.2 
 



 
Figure 1. Depiction of evolution of normal modes with time 

Enrico Fermi, John Pasta and Stanislaw Ulam in 1954 conducted a numerical experiment to investigate 
the rate at which a simple, weakly nonlinear system approached equipartition of energy among the normal 
modes of the associated linear system. 3 
 
The system investigated by the FPU numerical experiment was an array of nonlinear oscillators obeying 
an  equation which was the discretization of the vibration of a linear string. Nonlinear perturbations were 
added to the force laws of the springs. Quadratic, cubic, and piecewise continuous terms were added to 
the tension model. 3 
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The nonlinear model was integrated for many thousands of cycles of the model's normal modes. The 
sharing of energy among the various normal modes of the linear system never approached an 
equipartition, or even a statistically steady state. Instead, the system continued to periodically almost re-
attain the initial state. High mode numbers never participated, and energy was shared significantly only 
between the first few modes. 3 
 



 
Figure 2. (Figure 1 from the FPU paper) This demonstrates the energy in each of the first 

few modes for 30,000 cycles3 

 
The Fermi-Pasta-Ulam numerical experiment demonstrated that the ergodic property often fails to 
manifest for weakly nonlinear systems. It is difficult to prove that a system will eventually behave 
ergodically. 
 
Numerical System, and Visualization Methods: 
 
In this paper, a low dimensional linear system is integrated. The system has only four state variables for 
the purpose of visualization of the flow, and the statistics with which the flow moves across the energy 
surface. Nonlinear terms are added to the system and the effect on the flow and statistics are visualized. 
 
The system chosen is that of a two-mass, two-spring network, shown below. 
 



 
Figure 3. Low DOF nonlinear spring-mass system 

 
The ordinary differential equations governing this system are as follows: 
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Choosing k11 = 1, and k21 = 1 for the linear part of the system, the following eigenvalues, corresponding 
to the angular rates, and normal modes are obtained:  
 

ଵ,ଶߣ = ±1.6180݅

ଵݒ = 	 ቎
0.4427݅
0.7236
−0.2764݅

0.4472

቏ 

ߣ ଷ,ସ
= ±0.6180݅

ଷݒ = 	 ቎
0.4427
0.2764݅
0.7236
0.4472݅

቏
 

 
These particular stiffness coefficients yield normal modes that have eigenvalues that are not rational 
fractions of each other. The linear system, in this case, will, in general, densely fill a 2-parameter 



subsurface of the 3-parameter energy surface if it is started in anything but a pure excitation of one of the 
normal modes. 
 
In order to facilitate the visualization of the flow of the ODE, a nonlinear map from the four dimensional 
state space to an appropriate 3-dimensional space is produced. A nonlinear map is found between the state 
variables [x1,x2,y1,y2], and a three-dimensional, non-Euclidean set of coordinates tangent to the energy 
surface denoted [u1, u2, u3]. The linear system may have an easy analytical solution to parameterize the 
tangent space coordinates in terms of the state variables, but in general the nonlinear systems may have a 
more complicated shape to the energy surface.  A numerical method is used to solve for the coefficients 
of a polynomial map, a Taylor series relative to the initial condition of the problem: 
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The first order terms are found by using Gram-Schmidt orthonormalization of the vectors 
ሬሬሬሬሬ⃗ܧ݀ with respect to the local gradient of the energy surface {ොଷݔ݀	,ොଶݔ݀	,ොଵݔ݀} , and each other. The 
remaining terms are found by transporting the basis of vectors {ݑොଵ,ݑොଶ,ݑොଷ} to several neighboring points, 
renormalizing their orientation with respect to the energy gradient vector ݀ܧሬሬሬሬሬ⃗ , and solving a linear-least-
squares problem for the coefficients ℎ௝௞ଶ௜ which best reproduce the transported vector bases. 
 
This gives a map to a three dimensional space, in which the flow of the ordinary differential equation 
system can be conveniently plotted. The polynomial map can only remain tangent to the energy surface 
over a finite radius of convergence which is tested via a shooting method and analyzing the relative error 
of the energy of the map ccoordinates to the energy at the origin of the coordinate system. Higher order 
terms to the map would help it converge over a larger domain, but in general it takes more than one map 
to completely cover a noneuclidean surface faithfully.  
 
In the analysis, integration planes are set up in the u coordinate system. These planes count the number of 
times the flow of the ODE carries it past the plane in a certain small square dui^duj. This is averaged over 
the length of time over which the system is integrated, and will help with the visualization of how densely 
the trajectory of the system is filling the 3-parameter energy surface.  
 
Results and Discussion: 
 
If initial conditions are chosen such that only one of the normal modes is excited, the trajectory of the 
linear ODE revisits the same point periodically. Due to the non-rationality of the eigenvalue (normal 
mode frequency) ratio, if the linear function is started in a mixed-mode, the trajectories densely fill a two-
parameter surface, as shown below in Figure 4a for x0 = (Normal Mode 1 + Normal Mode 2) (hereafter 
NM1,NM2 will refer to the real (zero phase) parts of the two normal modes of the system). 
 
Additionally, in figure 4b, the relationship between the figure, trimmed to its range of validity, versus the 
complete projection of x into u is shown. The radius at which the nonlinear map is truly tangent to the 
energy surface is taken to be the radius at which the energy of the map significantly diverges from the 
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tangent to the energy surface when the radius is less than the value produced by this. Outside of this 
bound, distinct flow lines may cross in the no-longer-tangent projection. Future visualizations will be 
limited to this radius of convergence. 
 



 
Figure 4. a) The normal modes of the linear system repeat periodically. b) The mixed 

modes of the linear system sweep out a 2-parameter surface within the energy-surface. c) 
The entire energy surface cannot be mapped with a single coordinate transformation. 

Outside the range of validity, the flow crosses in the projection. 

 
Nonlinearity is added to the system of equations by setting the parameters k12,k13,k22, and k23 equal to 
0.05. With weak nonlinearity, and using initial conditions of 1x and 10x the first normal mode, the 
comparison between the linear and nonlinear trajectories can be seen below. The trajectories are 
integrated, using 4th order Runge Kutta, for a time of 150π. 
 

 
Figure 5. Linear (blue) vs. nonlinear (red) trajectories. a) 1x NM1 b) 10x NM1 

 
 
The nonlinear equation's trajectory appears to be densely filling a two-parameter surface, compared with 
the periodic (one parameter) orbits of the linear equation's normal mode. 
 
Looking at a mixed mode initial condition of 4xNM1+4xNM2, the nonlinear equation's trajectories still 
appear to densely fill only a two-parameter surface. 
 



 
Figure 6. Linear (blue) vs. nonlinear (red) trajectory surfaces 

 
A plane is set up along the u2-u3 axes, and the number of times the trajectory crosses the plane within a 
given differential area and time is counted. The time-average of plane-crossings per unit time is reported 
in the figures below for several initial conditions. The trajectories are integrated until t=30,000. The 
planes have 300x300 counting-bins in the range of the plots shown below: 
 



 
Figure 7. Long-time integrations of crossings of the u1-u2 plane, diferent ICs, nonlinear 
springs 

These solutions are not producing the sort of even mixing predicted for an ergodic system. Only a two-
parameter surface (with a one-parameter intersection with the u2-u3 plane) is being filled by the 
trajectories of the system, not the entire energy surface. As long as the system produces trajectories that 
fill only a two-parameter curve, it sugests the existence of a second conserved quantity that is not being 
destroyed by the nonlinearity of the force laws. The exterior force of the anchor point should be 
destroying the conservation of momentum symmetry. 
 
As a last resort, the nonlinearity of the system is increased significantly. k12,k13,k22,k23 are set to 0.5, and 
the trajectory is integrated starting at a 20xNM1 initial condition for a period of T=300,000. 
 



 
Figure 8. Highly nonlinear springs, energetic system, very long integration 

Variation  here is probably due to numerical error. The intersection still looks like it is a one-parameter 
curve. 
 
Returning to the original set of parameters, and varying the initial condition to be several combinations of 
each normal mode, a nested shear of one-parameter intersections is produced. There is no inter-sheaf 
mixing evident. 
 

 
Figure 9. Nested one-parameter curve intersections of trajectories starting from different 

ICs, original nonlinear spring potential case 

 



 
Conclusions: 
 
In the simple nonlinear spring-mass system, the ergodic property does not obtain. The energy surface is 
not densely invaded by the trajectories of the system for any of the investigated conditions. Even in highly 
nonlinear circumstances, with high energy initial conditions, the trajectories invade at most a two-
parameter surface, not the entire three parameter energy surface. The two-parameter surfaces swept out by 
the trajectories vary smoothly with varying the initial conditions at constant energy and appear to nest 
neatly. 
 
This system must have another conserved quantity which is not destroyed by the nonlinearities in the 
inter-particle potentials. Chaotic or ergodic behavior is not necessarily a feature of this simple system, no 
matter how nonlinear. This result may be due to the simplicity of the system, or it may be akin to the 
Fermi-Pasta-Ulam system producing its own quasi-periodic behavior and not yielding equipartion of 
energy.  
 
In my own system, u2=0, u3=0 represents where the trajectories cross the plane, and correspond to the 
initial condition. While my own system is much simpler than the FPU oscillator, the system does return 
periodically to being arbitrarily close to the initial conditions, even in the highly nonlinear case, a similar 
behavior to the FPU system. 
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Appendix: 
 
The software code for this project is too long to list easily here. It is available upon request from Aaron 
M. Schinder, aschinder3@gatech.edu, 937-626-7651, and a software copy will be provided to Prof 
Raphael de la Llave, Georgia Institute of Technology along with this semester project report. 
 


