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Abstract 
 
A direct numerical method for the determination of the coefficients of the characteristic polynomial of a matrix was 
found while on a quixotic quest for a means of  direct numerical solution of the eigenvalue problem. The geometric 
meaning of the determinant, and the linearity and behavior of the exterior algebra were used to derive a means of 
separating the unknown  λk from the numerical part of the kth coefficient of the characteristic polynomial, expressed 
as a sum of NCk determinants. The overall complexity class of the algorithm is O(N32N), making it mostly useless 
from a computing perspective. My original goal may end up being torpedoed by an isomorphism between this 
problem and one whose solution is forbidden by the Abel-Ruffini theorem, which is discussed. 
 
Disclaimer 
 
This is not an academic paper. I haven't done any literature search for the originality of this method, or the history of 
the mathematics of linear algebra, beyond learning a lot of general skills in the subject in my math classes. In 
addition, I would be highly surprised if this method turned out to be original, (or even useful, given it's embarrassing 
complexity class), given that this is one of the most highly developed branches of mathematics, and is over 200 
years old at this point. 
 
This paper is organized like an academic paper mostly for the practice of quickly writing them. It is less formal in 
tone. 
 
Introduction 
 
Deriving the eigenvalues of a matrix and finding the associated eigenvectors is an important mathematical operation 
in the solution of linear algebra problems, linearizations of nonlinear systems of equations, and the solution of linear 
partial differential equations using approximations for the function space of the solution.  
 
Eigenvectors have special properties in linear systems. They correspond to the stationary states of Schrodinger's 
equation, and other harmonic solutions to wave equations. They correspond to characteristic lines of the attractors of 
ordinary differential equation systems. Methods to efficiently find the eigenvalues and eigenvectors of a matrix are 
important. 
 
This is not one of those methods. 
 
Matlab, and other commercial solvers typically use an iterative method to transform the initial matrix into a 
triangular form. QR decomposition, and various refinements thereof for more specific input matrices, is used to 
solve not only the eigenvalue-eigenvector problem, but is used internally to iteratively solve for the complete set of 
roots of a polynomial by transforming the problem into an eigenvalue problem. 
 
I was thinking about the solution to the eigenvalue problem, given that I have several linear partial differential 
equations that I am currently studying. When I have a problem like this, I tend to sometimes try to come up with an 
algorithm on my own prior to deep reading on the subject, as this is occasionally faster, and can give insight into the 
problems that cookbook application of someone else's process does not, when it doesn't lead me down all sorts of 
rabbit holes to no purpose. 
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Derivation 
 
A matrix can be thought of, geometrically, as a series of differential one-forms, each pointing in an arbitrary 
direction in space. Each one form is related to one of the unit basis vectors. If your unit basis is Cartesian, and you 
aren't worrying about skew-transformations of coordinates, you don't have to pay as much attention to the  
transformation properties, covariance and contravariance, of each end of the basis tensor product. This would be 
specific to what sort of object you are representing anyway. 
 
 

ܣ = ࢘⊗ࢋ = ࢋ ⊗ܽࢋ 
 

࢜ܣ = ࢋ (࢜)࢘⊗ = ࢋ ⊗ܽݒ(ࢋ ⋅ (ࢋ =  ࢋݒܽ	(ݏ݅ݏܾܽ	݊ܽ݅ݏ݁ݐݎܽܿ	ݎ݂)
 
 
 
In this notation, capital letters are matrices, bold letters are vectors or dual-vectors (one-forms, etc). The subscripts 
are component indices in the Einstein summation convention. 
 
The differential one-forms ri correspond to the row vectors of the A matrix. ⨂ is the tensor product. Bolded 
quantities represent vectors or one-forms. 
 
Geometrically speaking, the determinant of a matrix is the oriented magnitude of a differential N form, where N is 
the rank of the matrix. It is the inner product of the N-form, constructed from each of the component one-forms, 
with the unit N-form of your coordinate basis. In less abstract, general terms, it is the oriented N-volume of the 
parallelopiped formed by the set of row-vectors of the matrix.  
 

	ܣ = 	 
࢘
. . .
ࡺ࢘
൩ 

 

 
 
The N-form is constructed by a type of product defined in the branch of mathematics called exterior algebra. The 
exterior product takes two differential forms of a certain type, and constructs higher dimensional geometric objects 
from them. These geometric objects correspond to oriented areas, oriented volumes, oriented hypervolumes, and so 
on. They too have the properties of orientation and magnitude. 
 
Aside 1: 
 
You might recall that you've already seen a means of describing an oriented area in vector calculus: the cross 
product. The cross product and the wedge product are indeed intimately related. The exterior algebra is more 
general, and powerful, however, in that it behaves in a way that is systematically generalizable to any number of 
dimensions. 
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You might ask yourself how to describe the cross product of two vectors in four dimensions: There isn't one vector 
that is normal to each of the two cross-product vectors, but two! The differential two-form is well defined, however, 
with components in a basis {e1^e2, e3^e1, e2^e3, e2^e4, e4^e1, e4^e3}. There are six components in the basis for 
four dimensional differential areas, and only four components in the basis for four dimensional vectors, or four 
dimensional oriented 3-volumes for that matter. There are more ways to point an area in general, than there are to 
point a vector in higher dimensions! The number of bases of a differential area also corresponds to the number of 
degrees of freedom in a rotation group (or other metric preserving transform group, such as the Lorentz transform 
(well, provided what you are preserving is a 2-form, not a higher order form!))  
 
In addition, this provides a natural way to extend the concept of the determinant of  a matrix to include "sub-
determinants", which take subsets of the set of component forms to form N-k forms. 
 
Determinants of Matrices, and Determinants of Sums of Matrices: 
 
The determinant of a matrix is the oriented volume of the N-parralelopiped formed by the component row vectors: 
 

 
(ܣ)ݐ݁݀ = .^࢘^࢘) . (ࡺ࢘. ∙ .^ࢋ^ࢋ) . .  (ࡺࢋ

 
With this geometric picture in mind, it is easy to discern other properties of a matrix. If a matrix has a zero 
determinant, then it must have a null-space, and a dual-null space. The row addition operation does not alter the 
determinant (and from this, the process of bringing the matrix to upper triangular form via Gaussian elimination 
gives you the determinant by the product of the diagonal elements). 
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Or, taking advantage of the properties of exterior algebra, a^a = 0, and the linearity of the exterior product: 
 

ஷ࢘^࢘ = ஷ࢘)^࢘ +  (࢘ࢻ
 
It is this property that can be used to calculate the coefficients of the characteristic equation. The eigenvalue is 
classically stated thus: 
 

ݒܣ =  ݒߣ
 

ܣ) − ݒ(ܫߣ = 0 
 
 The aforementioned means of finding the determinant via Gaussian elimination to bring A into upper triangular 
form does not allow you to produce a direct solution for the eigenvalues, as the row operations amount to the 
application of a transform matrix T, which transforms both A and the identity matrix. You no longer have a purely 
triangular matrix. 
 

ܣܶ) − ݒ(ܶߣ = 0 
 
T - upper (lower) triangular, TA lower (upper) triangular.  
 
However, the matrix (ܣ −  :when decomposed into row operations, has the form ,(ܫߣ
 


࢘ − ࢋߣ

⋮
ࡺ࢘ − ࡺࢋߣ

൩ 

 
As per our geometric picture before, the determinant of (ܣ −  :works out to (ܫߣ
 

࢘) − ࢘)^(ࢋߣ − .^(ࢋߣ . . ࡺ࢘) −  (ࡺࢋߣ
 
Which, when it is expanded, gives a polynomial: 
 

.࢘^࢘) . . (ࡺ࢘^ + .^࢘^ࢋࣅ−)} . . (ࡺ࢘ + −^࢘) .^ࢋࣅ . . .+(ࡺ࢘ . . .^࢘^࢘) . {(ࡺࢋࣅ−. + {. . . }+. . . ^ࢋࣅ−)+
− .ࢋࣅ . . ^−  (ࡺࢋࣅ

 
Using the linearity of the wedge product, the factors (-λ) can be removed from the polynomial, and you are left with 
a polynomial of order N in λ, otherwise known as the characteristic polynomial. The kth coefficeint, then, can be 
formed as a sum of the determinant of matrices formed with a combination of  (N-k) chosen from {ri} and k chosen 
from {ei}. 
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There are 2N total combinations, so in total, the time complexity is 2N times the time complexity of finding the 
determinants. The unknown factor λ is factored from the numerical coefficient. If a general method, such as 
Gaussian elimination is used to find the determinants, the overall time complexity for determining the coefficients of 
the characteristic polynomial is O(N3*2N). ....Shut up.... At least it isn't as bad as the method of minors. 
 
Aside 2: 
 
While this algorithm is probably not numerically useful for the solution of the eigenvalue problem, it did bring to 
mind a few interesting isomorphisms between eigenvalue problems and the roots of polynomials: 
 
If a direct method for the solution of the eigenvalues or eigenvectors were ever to be found, it would amount to a 
means of directly (exactly), as opposed to iteratively, solving for the roots of a polynomial of arbitrary order.  
 
Even if a direct method for solving for one eigenvector of a matrix were found, this would lead to a direct method 
for both the solution of a polynomial of arbitrary order, and for finding all subsequent eigenvalues through the 
following process: 
 
For polynomials P, matrices A 
)ݐݎ݁ݒ݊ܥ .1 ேܲ = 0) 	→ ࢜ேܣ)	 =  (࢜ߣ
࢜ேܣ)݈݁ܿܽݎܱ_ݎݐܿ݁ݒ݊݁݃݅ܧ_ݐܿ݁ݎ݅ܦ .2 = (࢜ߣ  ࢜→
࢜ேܣ .3 ∙ |࢜|/࢜ =  ߣ
)݊݅ݏ݅ݒ݅ܦ_݈ܽ݅݉݊ݕ݈ܲ .4 ேܲ ݔ)	/	 − →((ߣ ேܲିଵ 
5. Iterate - Return to 1, feeding PN-1 into process. 
 
The Abel-Ruffini theorem suggests that the latter of these processes, and by extension the former, may be 
impossible, at least in terms of radical expressions1.  
 
The λs correspond to the exact roots of the polynomial. If an oracle existed that returns even one eigenvector via an 
exact process, one λ may be found exactly. Polynomial division and iteration would return all the roots of P via an 
exact process. This would contradict the result of the Abel-Ruffini theorem. 
 
Conclusion 
 
An algorithm for the direct numerical production of the characteristic polynomial coefficients of a matrix has been 
developed. It doesn't allow direct, or even all that efficient, a solution to the eigenvalue problem. Commercial 
solvers proceed in the other direction, using iterative methods to solve the eigenvalue problem in order to find the 
roots of a polynomial. Interesting parallels between the direct solution of this problem and the direct solution of 
another unsolved problem (exact roots of an arbitrary order polynomial) have been developed. 
 
Time has been wasted. Fun has been had. Trees have been mercilessly slaughtered in the pursuit of math. 
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