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Information theory formalism has been applied to the scanning electron microscope. A theoretical model 
of two-dimensional secondary electron noise has been derived and the maximum capacity content per 
picture element of the S.E.M. has been computed as a function of its geometrical resolving power. Ac­
cording to the theory, it is shown that the maximum number of grey levels on the picture varies between 
2 and 8 (varying with the maximum secondary electron yield) with a resolving power of 200 A for a S.E.M. 
equipped with a tungsten filament gun, and 30-40 A is equipped with a lanthanum-hexaboride gun. How­
ever, these figures are established with the assumption that the object does not present any redundant 
properties. The knowledge of the statistics of a general class of objects will permit the use of adapted coding 
to increase the information content in the object area of interest. 

INTRODUCTION 

In communication theory/,2 the transmission of the 
greatest possible amount of information depends 
mainly on two factors: (1) the statistics of the source 
and (2) the capacity of the channel. The statistics of 
the source represent in optics a new subject in itself and 
will not be considered. Only the capacity of the trans­
mission channel will be treated. 

In the time domain, if Q is the quantity of information 
transmitted during a time I, the rate of information Do 
is equal to 

Do= lim (Q/I) (1) 

and for a given transmission channel, i.e., for a noise 
function N (I) characteristic of the channel, it will be 
possible to find a class of signal source which maximizes 
(1). This maximum D of Do is called the capacity of 
the channel. 

In a optical channel, by analogy to (1), the rate of 
information Do will be defined as the information that 
the channel can transmit per single image.3 At this 
stage, it is necessary to introduce the concept of degrees 
of freedom in an optical system: the number of picture 
elements necessary to specify completely an optical 

and with the condition that the different aberrations 
coefficients are known, the a priori knowledge that the 
object is of finite extent is sufficient to ensure the exact 
restoration of an image degraded by aberrations and 
diffraction. Consequently, the main limitation imposed 
on the capacity of a optical channel is the noise. 

In order to determine the maximum capacity of the 
scanning electron microscope as a communication 
channel, some knowledge of the statistical properties of 
the noise is required. For reasons which are not directly 
connected with noise properties, the best results in 
terms of resolving power have always been obtained 
with low-energy secondary electrons emitted by the 
object and collected to form the image. Under these 
conditions, the different sources of noise which cause a 
deterioration of the image are 

(a) fluctuations in the primary beam (Schottky 
noise) ; 

(b) fluctuations in the secondary electron emission; 
(c) fluctuations in the number of electrons emitted 

by surface area; 
(d) fluctuations in the number of secondary electrons 

collected; 
(e) detector, amplifiers, and photographic noise. 

image. If the system has a spatial frequency bandwidth It has been shown' that the main limitation in 
.:lW such that - F~.:lW ~ + F, the application of the resolving power is the noise directly correlated with the 
sampling theorem3 leads to the conclusion that the object [parameters (a) and (b)] and is called the 
picture is completely determined by giving its values at object self-noise. The noise correlated with the detector 
a series of discrete points (sampled points) spaced 1/2F and amplifiers [(d) and (e)] can ultimately be 
apart. Under these conditions, every measurement will neglected. The photographic noise will be produced by 
be independent from each other and the number of the plate grain and it is assumed that the pictures are 
degrees of freedom will be equal to the number of recorded at such a magnification that, at the object 
measurements in one picture. The distance 1/2F level, the noise has a microscopic correlation and a 
defines the size of a picture element (or resolving very small rms value.3 

power) and the rate of information Do can be specified Concerning (c), previously published studies on 
in terms of rate of information Co per picture element. secondary electron noise have been concerned primarily 
As in the time domain, it will be possible to find a class with electrons having a Poisson distribution in time 
of pictures which gives a maximum value C of Co, called without consideration of the dispersion of secondary 
the capacity of the channel. The value of C will depend electron sources over a surface area S. In scanning 
on the geometrical aberrations and diffraction, as well electron microscopy, however, the secondary electron 
as background and detector noise. sources are distributed over the surface covered by the 

In 1964 Harris4 showed that in the absence of noise beam, generating a scintillation phenomena, and it will 
4632 
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INFORMATION CAPACITY IN MICROSCOPY 4633 

be shown that this fact can lead to it marked departure 
from Poisson behavior. 

In summary, as far as the noise is concerned, the only 
limitations involved in the maximum capacity per 
picture (object) element of a scanning electron micro­
scope are introduced by the fluctuations (a)-(c) 
above and only they will be considered in this study. 

In a scanning electron micro3cope, the crossover of 
the gun is demagnified by a series of lenses into a fine 
spot on the object surface. It is generally agreed that 
the Gaussian functionj(O) exp(-r2/Ro2) constitutes a 
good approximation for the electron distribution at the 
crossover.6 Then, if M is the total demagnification, the 
radius RI of the final spot is equal to RI =M'Ro+I1R, 
where !1R is a term introduced by the aberrations of the 
objective lens. As a first approximation, Appendix A 
shows that the final spot has a Gaussian distribution, 
j' (0) exp( -r2/ RI2). In the rest of the paper, it has been 
assumed for reasons of mathematical simplicity that 
this spot has a uniform electron distribution inside a 
circle of diameter 2R, R being defined by the equivalent 
surface of a Gaussian distribution. This is discussed 
in Appendix A. 

An S.E.M. differs from a conventional optical instru­
ment in that at any instant only one object element is 
being observed by the detection system. As a conse­
quence, it is possible to visualize an idealized S.E.M. as 
shown in Fig. 1, in which the object, generating second­
ary electrons, is followed by a perfect electron-optical 
lens, free of geometrical aberrations. The resolving 
power of this lens will then be limited only by diffrac­
tion. An array of light-emitting electron detectors is 
located in the conjugated plane corresponding to a 
magnification M such that every detector area has the 
same size as that of the central part of the diffraction 
figure given by a siugle electron, i.e., A/2, where A is the 
de Broglie wavelength. The light is then observed 
through a transparent scanning aperture of diameter 
2M R. The gain of every detector is such that one 
collected electron will produce light of brightness Bo. 

STOCHASTIC PROPERTIES OF SECONDARY 
EMISSION IMAGES 

In the theory of information, a random process is 
said to be stationary if its statistical characteristics are 
invariant under time shifts, i.e., if they remain the same 
when t is replaced by t+a, where a is arbitrary. Then 
the probability densities Pn (Xl' , ,Xn, 11'" tn) of the 
stochastic variables Xl" ,Xn and their moments 
m,. (tI , , ,tn) and correlation functions c (II' , ,In) do not 
depend on the absolute position of the points iI" ,t" on 
the time axis, but only on their relative configuration, 
i.e., only on the time differences t2-tI "" t,,-ti . By 
analogy to the time domain, a random process 
X[M (x, y) ] in the plane [x, yJ will be stationary if 
its statistical characteristics are invariant under 
translation, i.e., if they remain the same when M is 

replaced by M+N, where N is arbitrary. Then, the 
probability densities p,. (X, M I , , 'M,.) and the moments 
will depend on M2-M1" ,M,,-M1. In the S.E.M., the 
brightness B(M) of an infinitesimal element of an 
object within a picture or object element is generally a 
nonstationary process since the object will have 
variations in surface topography smaller than the size 
of the element; therefore, the conditions of invariance 
under translation will not be conserved. On the other 
hand, an analysis of the nonstationary properties of 
B(M) will necessitate a knowledge of the object 
surface that we do not have, since this is just the 
purpose of the observation. Therefore, the analysis of 
brightness must be limited to a class of objects such 
that every member has a spatial frequency bandwidth 
equal or less than the bandwidth transmitted by the 
instrument. With these conditions, the invariance 
under translation is conserved and B (M) can be con­
sidered as a stationary process. Then it will be possible 
to derive: 

(1) the average value B per picture or object 
element. 

(2) the autocorrelation function, which is given by 
the second-order properties of the centered variable 
j3(M) =B(M)-B: 

K(M1-M2) = (!3(M1)j3(M2». (2) 

The knowledge of K(M1-M2) will give the Wiener 
spectrum such that; 

where C/) is defined in the frequency domain. 
(3) the probability density PCB, M)dB. 

(3) 

According to the assumptions made concerning the 
class of objects we observe, B (M) is an isotropic 
stochastic function, and the Fourier transform of Eq. 
(3) is 

r(w) =21r L" Jo(wk)K(k)kdk, (4) 
o 

where w2 = w.,2+WIl2 = %2j12 (in radian/ L) and k = 

J MI-M2J. Let us now consider an object element with 
a surface 1rR2 which emits N secondary electrons during 
an observation time t. According to the conditions of 
our experiment as described by Fig. (1), the location of 
these electrons will be known within a spatial un­
certainty defined by a circle of diameter A/2, where A is 
the de Broglie wavelength associated with the electron.7 

It will then be possible to represent each electron Cj 

emitted by the surface by a small circle of diameter 
2Rj =A/2, where the R/s are stochastic variables 
independent of each other and of position on the 
surface: R j will only depend on the kinetic energy of the 
electron considered. We will call per) the probability 
distribu tion function of the R/s, such that p (r) = 
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OBJECT PLANE 
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I MAG: PLANEi 

0' ........... 

FIG. 1. Principle of image formation in a scanning electron 
microscope. 

Prob(R<T). Let us also assume that the centers OJ of 
these circles are distributed on the surface according to 
a Poisson distribution. Then, the stochastic variable 
n(M), representing the number of circles Cj covering a 
given surface S will have a probability density 

(5 ) 

where d=N /TrR2 is the average electron density. 
If a brightness Bo is associated with every electron 

contributing to the image, then we can define the 
brightness B of a point M of the object by 

o if M is not covered by any circle 

Bo if M is covered by a circle Cj 

n (M)Bo if M is covered by n circles Cj • 

With these hypotheses, Band K(Ml -M2) can be 
evaluated and their values will then allow the deter­
mination of the normalized variance: 

(6) 

All these results can be computed using the joint 
characteristic function of n(Ml) and n(M2). This is 
easily obtained by using a method of calculation 
developed by M. Savelli8 and B. Picinbono.9 This 
calculation is performed in Appendix B. We then have 

B = dBo1rT02 = aN Bo, 

K(k) = 2dBo2F(k, T), 

(7) 

(8) 

where To is the radius of the central part of the diffrac­
tion figure in the object plane, given by an electron 
emitted with an average kinetic energy Eo, and k is the 
distance between two points OJ-

Application of the Hankel transform shown in Eqs. 
(cl)-(8) gives the Wiener spectrum few). Figure (2) 
shows the variation of f (w) as a function of w (in 
radian/ A). It is clear that, for spatial frequencies above 
20 A, the noise is white. 

The values of Band u2 (B) are the first moment and 
the variance of the probability density PCB I N, M)dR 
over a very small surface element centered on point M. 
This function is easily computed with the same argu­
ment used by Rice.lO It is found to be a gamma dis­
tribution 

PCB I N,M)= --- - e-B1Bo . 
1 1 (B )aN-l 

Bo f(aN) Bo 
(9) 

As explained above, N is a stochastic variable 
representing the number of secondary electrons emitted 
by the object element during the time I that the primary 
beam remains on the same location. N depends on the 
statistics of secondary-electron emission and on the 
Schottky noise of the primary beam. If an average 1\'1 

primary electrons per second reach the object, then the 
probability P (x) of having x primary electrons after a 
time tis 

P (x) = [(S'lt)x exp (-1'.'11) J/ xl. (10) 

If we assume that the probability p (N / x) of gen­
erating N secondary electrons from a surface with a 
secondary-electron yield f follows a binomial dis­
tribution 

P (N I x) = [xV N! (x- N) !JfN (1-f)x--N, (11) 

then the probability of producing N secondary elec­
trons from an average of Nl primary electrons is 

'" (fNll)N_, 
peN) = LP (N I x)p(x) = exp(-l\l'y/) (12) 

x=N N! 

'" p(B,M)= L PCB I N)p(N) 
N=l 

_ 1 '" 1 (B )aN-l (S'dt)N 
=exp(-B/Bo-Ndt) - L -- - T 

Bo N=l f (aN) Bo 1\' ! 

(13 ) 

Since this series is uniform ally convergent for all 
values of B/ Bo, we have 

B= 1'" Bp(B, M)dB= 1'" B exp(-B/Bo-Ndl ) ~ 
o 0 Bo 

x [t _1_ (B )aN_l (fiidIY] dB 
N=lf(aN) Bo N! 

'" (Nl'yt)Nexp(-.i\rdt ) 
= Bo 2: -'----'--'-- --=-'--------'-

N=l N! f(aN) 

f'" (B)aN X 0 Bo exp (-B/Bo)d (B/Bo). (14) 
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INFORMATION CAPACITY IN MICROSCOPY 4635 

Finally 
(15) 

which is equal to the same value as in (7) as expected. 
By the same argument, 

(B.?) = B02 f (stl'yt)N exp (-stdt ) 
N=l N! r(aN) 

f"" (B )aN+I (B ) 
X 0 Bo exp(-B/Bo)d Bo 

=iJrrr02B02 (1 +r02/ J?2)+d27r2r04Bo2 

and the new value 0-2, (B) is 

(16) 

rT12 (B) =d7rr02Bo2 (1 +rN J?2). (17) 

Obviously, the spatial-correlation function does not 
depend on time and is equal to: 

K(k) =2d(1+ro2/R2)Bo2F(k, r). (18) 

SIGNAL-TO-NOISE RATIO IN VIDEO SIGNAL 

The scanning aperture will have low-pass filtering 
properties for noise. If rTim2(B)/B2 is the normalized 
variance of the signal at the output, we have, in the 
Fourier domain: 

where T(w) is the Fourier transform of the scanning 
aperture transmittance. On the spatial domain, Eq. 
(19) corresponds to the following relationship: 

rTim~~B) = B2~R4 ~ K(k) (1
M 

t(M)t(M+k)dM) dk, 

(20) 

where t(M) is the transmittance of the aperture as a 
function of M (x, y). According to our hypothesis, 
t(M)=l for 1M I5.R and =0 for I M I >R. The 

1.0 

0.5 

0.2 

0.1 

0 0.05 

'""' ~ 0.02 
~ 

"'""' 
0.01 

0.005 . . . 
0.002 200A 50A 15A , , t- .\. 0.001 

0.01 10 0.001 0.1 1.0 . 
w (rad/A I 

FIG. 2. Power spectrum of spatial noise. The arrows indicate 
the frequencies corresponding to, respectively, 200, 50, and 
15 A. 

30 

20 

z 10 
.... 
en 8 

6 

IL-~~-L~~~~~~~~~~~~~ 
20 60 140. 180 220 260 300 

II (AI 

FIG. 3. Signal-to-noise ratio in video signals as a function of 
resolving power. 

convolution product of Eq. (20) is equal to: 

jE t(M)t(M+k)dk=R2T(k/2R), 
o 

where 

(21) 

[ ( 
k\ k ( k

2 )1/2] 
T( k 12R) =7r- 2 arcsin 2RJ + 2R 1- 4J?2 

=0 

and by Eqs. (8) and (21) 

k5.2R 

k>2R 

rTim~(B) = _1 4(~+r;/R2) fE F(k, r)T (k 12R)kdk. 
B2 7rr02 d7rr027rR2 0 

(22) 

The relation (22) gives the signal-to-noise ratio in one 
image element. 

INFORMATION CONTENT OF THE IMAGE 

Let x and y represent, respectively, the received and 
transmitted signals in a communication channel. The 
total mutual information I (X, Y) or the information 
capacity of the communication channel per degree of 
freedom can be represented by the expression: 

C=I(X, Y) =H(Y)-H(Y I X), (23) 

where H(Y) stands for the entropy of y, H(Y I X) for 
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FIG. 4. Information capacity of an S.E.M. with a tungsten 
filament gun as a function of resolving power. 

the conditional entropy when the signal x is known and 
transmitted through a noisy channel,2 If p (y), p (x) are 
defined as the probability densities of y and x, respec­
tively, and p (y I x) as the conditional probability 
density of y when x is known, then Eq. (23) becomes1.2 

C = - f p (y) In (p (y) ) dy 

+ ffp (x)p (y I x) In (p(y I x»dxdy. (24) 

In the application of this formalism to the scanning 
electron microscope, x will be the average brightness B 
of an object element and y will be the brightness B 
which will be perceived by the observer's eye. Because 
of the stochastic properties of B, y can be different from 
the average value, and C will be the information 
capacity of the S.E.M. per picture element. The condi­
tions for maximization of Eq. (24) depends upon the 
statistics of the noise and of the object, and is treated 
below. 

Concerning the noise, if the psychophysical uncer­
tainty in the brightness perception is neglected, then 
the probability density p(y I x)=p(B I B). For signal­
to-noise ratios larger than 3 to 4, which, according to 
Rose,ll is the differential threshold for contrast, the 
number of electrons contributing to a picture element is 
large enough for the application of the central theorem 
of probability theory. Hence, p (B I B) can be con­
sidered a good approximation to a Gaussian function: 

_ 1 -
P (B I B) = exp[ - (B- B)2/20'im2] (25) 

O'im(2'1r )112 

with Band O'im2(B), respectively, given by Eqs. (15) 
and (22). 

Concerning the object, p(x) =p(B), the brightness of 
every element lies between 0 and Bmnx =iL'lf"Yo2BO. The 

second part of Eq. (24), which is the conditional entropy 
H(Y I X), is maximized when all values of B inside 
this range are equally probable, i.e., p (B) = 1/ Bma". The 
signal received, however, is strictly speaking, repre­
sented by B, and the first part of Eq. (24) is maximized 
only for a uniform distribution pCB) =l/Bmax.. How­
ever, if k.. has a uniform probability, then the proba­
bility PCB) is not uniform. It does not matter at all, 
however, because whatever the resultant distribution for 
B may be, the capacity of the optical channel must be 
evaluated with that probability distribution which 
maximizes H (Y). This would be precisely a uniform 
distribution, provided B is limited to a well-defined 
range. The last condition is not strictly true, since the 
upper limit is infinite. However, it is clear that only a 
small error will result if it is assumed that the upper 
limit is fixed and equal to Bmax, and for each picture 
element: 

(26) 
and 

(
- (B-B)2) _ 

Xexp dBdB 
20'im2 

Xexp (- (~~B)2) dBdB] , (27) 

which gives after transformation, 

X 1s 
exp (-X:) dX] dB. (28) 

o 20',m 

In the cases of interest (S/N'?;,3), erf(B/O"imY2)~O.5 
and, by Eqs. (24), (26), and (28), the maximum 
information capacity C is equal to: 

C -in [!.-. (dm_-'lr
r02)1/2] _ -=-_A _ 

- A 2'1r (dm 'If"Yo2) 1/2 (2'1r )1/2 
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PRACTICAL APPLICATION 

In this section calculations of both signal-to-noise 
ratio and information capacity of an S.E.M. viewed as 
a communication channel as a function of resolving 
power is performed. 

As is generally the case (Appendix A), the stigmatic 
and chromatic aberrations of the objective lens of a 
scanning electron microscope can be neglected and the 
maximum current for a beam of diameter 2R is given 
hy12: 

. = 37r
2
/3 (2R)SI3 _ 4 (1.22X)2) (30) 

~p 16 C.213 -s- , 

where C. is the lens spherical aberration, /3 the gun 
brightness, and X is the de Broglie wavelength. How­
ever, because of the lateral diffusion of the electrons in 
the object, the emission area for the secondary electrons 
is larger than the primary-beam cross section. It is very 
difficult to have an exact estimation of the lateral 
diffusion, since, among other factors, this phenomenon 
depends on the electron beam kinetic energy and on the 
various energy losses which are not very well known for 
kinetic energies used in an S.E.M. However, a reason­
able order-of-magnitude13 is obtained by setting Dopt = 
2.20R; Eq. (30) therefore becomes: 

. = 3~/3 (1.80R)813 _ 4 (1.22X)2) . (31) 
~p 16 C.213 -S-

It is assumed that every picture element is observed 
during an interval of time of 1(1-4 sec (this value 
corresponds to a 100-sec recording time for a S.E.M. 
with 1000 lines/frame). If '9 is the maximum secondary 
electron yield of the object observed, the average of the 
maximum brightness is: 

The values of '9 chosen to compute the expressions 
(22) and (29) are 0.1 and 0.5, corresponding to the 
large majority of conductive samples observed with 
primary energies on the 20-30 KeV range.5 

Concerning the gun brightness /3, two values have 
been chosen: one corresponding to a normal gun 
with a tungsten hairpin filament at 20 KeV (2.5X 104 

A/cm2·sr), the other corresponding to a lanthanum­
hexaboride gun (5X105 A/cm2·sr) at 12 KeV as 
published in the literature.14 

Two cases will be considered: one with the objective 
lens spherical-aberration coefficient Ca, 5 cm, and the 
other 10 cm which is typical of the electromagnetic 
lenses used in conventional scanning electron micros­
copy. The results of these calculations are shown in 
the figures. 

• Y.o.lS} 
• - 0 I C. -IOcm } ° Y' • t /0/\ ~ P-IS.IO A/cm·sler 
° Y -OS} ~ C. -Scm 6 Y -0.1 

/ .// 5 

/ ./ 
/ ./ 

/0, ./ 
° / ~ • 6 /0 ./ 6/1 

" / 6/ 

= 1° · /6/ .. " 
o / 6." ~ II· 6// u 

° • /./ /1 /6/ 
3 

• 4 / 

/0/ // 
• 1/ 

/I·jl 
2 0; I. 

6 " 20 60 100 140 • 180 220 260 300 
a IAl 

FIG. 5. Information capacity of an S.E.M. with a lanthanum­
hexaboride gun as a function of resolving power . 

DISCUSSION 

Figures (3)- (5) represent the video signal-to-noise 
ratio SIN and the maximum information capacity per 
picture element of a scanning electron microscope as a 
function of geometrical resolving power. The only 
source of noise taken into consideration is the object 
self-noise. Concerning the validity of this approximation, 
it has been shown5 that at least 90% of the limitations 
in resolving power by physical phenomena are due to 
the noise properties of the primary beam and the 
secondary electrons. The introduction of detector and 
amplifier noise in expressions (22) and (29) will 
probably change the results by only a few percent; 
however, if the observer's perception is taken into 
account, as it must be ultimately, the Weber-Fechner 
phenomena will introduce a more severe limitation on 
SIN and C, particularly for values of SIN near the 
psychophysical threshold. In any event, the values 
shown by these figures indicate the limitations of 
information capacity of an S.E.M. due to the physical 
phenomena that are ultimately beyond human control. 
These results show that for resolving powers of 200 A 
obtained with a tungsten filament, or 40-50 A obtained 
with a lanthanum-hexaboride gun, the average number 
of grey levels expected will be approximately 3-4, even 
though the SIN ratio is of the order of 6-10, i.e., greater 
than the threshold defined by Rose. Thus the classical 
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concept of resolving power in an optical instrument is 
modified by the introduction of signal statistics and of 
a noise factor correlated with the spatial resolution. In 
other terms, if we apply the Neyman and Pearson 
decision theory to the cases where C is smaller than one, 
even if the signal-to-noise ratio is equal to 3, it is 
possible to show that an ideal threshold detection 
device placed in an optimum position to choose between 
two different grey levels will have a 50% chance of 
making a wrong decision. Under these conditions, the 
concept of geometrical resolving power considered 
alone is meaningless and any attempts to process the 
picture to get such resolution, for example by color 
coding, will fail. It is possible to overcome this difficulty 
by increasing the total recording time of a picture; but 
with the present technology in the design of stabilized 
high voltage and current power supplies, a lOa-sec 
total recording time seems to represent an upper limit. 
Beyond this time, the lack of stabilization of these 
power supplies becomes significant. 

However, even if the images represent a large amount 
of information (SX 1012 bits/cm2 in the most favorable 
cases), they have a tremendous amount of redundancy. 
The capacity C computed above is an upper limit due 
to the fact that we considered every grey level as 
equiprobable. This hypothesis was corroborated by 
experiment as far as the amplitude statistics are con­
cerned,!" and the number of bits per picture element 
necessary for coding such information will be at least 
equal to the values of C in Fig. (4) and (S). However, 
it has been shown in the same reference that the 
differences between the brightness level of every picture 
element of a general class of images have stationary 
properties: the small variations from element to element 
are the most probable and the spectrum of "jumps" of 
different amplitudes between elements fit very well 
with a Gaussian curve. If we assume that this property 
holds for micrographs (and there is no apparent reason 
why it should not hold), the images must be trans­
mitted through the channel by using a differential 
coding.I6 It is however necessary to be careful about an 
indiscriminate use of the bandwidth compression 
techniques discussed or used in T.V. transmission, 
where the object is to transmit an esthetic image at the 
expense of a nonnegligeable amount of truncation 
errors. In micrograph pictures, the useful scientific 
information must be conserved, even if the coding 
leads to a picture with less esthetic value. A coding 
system which conserves the scientific information would 
be a system implementation in which the scanning 
speed of the beam will be accelerated on the "flat" area 
of the object, and slowed down on the areas which show 
amplitude variations. For example, if it is assumed that 
only 10% of the object conveys useful information and 
that the time for recording the total picture is con­
strained to approximately 100 sec with a resolving 
power of 40 A, one can in principle arrange conditions 

so that the analysis time is 10--3 sec/element instead of 
10--4 sec/element on the areas of interest while the 
analysis time is 10-5 sec/element for the areas whj,h 
convey no information. The average capacity of picture 
elements of interest will thus increase from 2 to 3.S bits 
(from 4 grey levels to 10--12). This case clearly shows 
the value of a differential coding system; it is possible 
to pass from 4 grey levels, where the geometrical resolv­
ing power has little significance, to a condition where the 
observer can better comprehend the full information 
content of the picture. 
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APPENDIX A 

The minimum diameter of the beam in an S.E.M. is 
estimated by assuming that the aberration disks and 
Gaussian image of the objective lens add III quad­
rature. I8 The beam diameter d is then: 

where dg is the diameter of the Gaussian image, d8 is 
the minimum disk of confusion due to the spherical 
aberration C8 , de is the disk of confusion due to the 
chromatic aberration Ge, and rid is the disk of confusion 
due to diffraction. Hence 

d2 = _4_ip_ + C_8_2
a
_6 +t2C

c
2a 2+ --'-(1_._22_A----') __ 2 + ... 

7r2{3a2 4 a 2 
(A2) 

and 

(A3) 

FIG. 6. Computation of impulse response of a lens with spherical 
aberration. 
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FIG. 7. Impulse response of the ob­
jective lens of a S.E.M.: C.=5 cm; a= 
3.10-3 rad; beam size 2Rl =40 A. The 
conditions shown correspond to a fre­
quency bandwidth Ilw=O.08 rad/ A 
(1/21"=39 A). 
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where 

i p primary beam curren t 
a beam semiaperture 
{3 gun brightness 
A de Broglie wavelength 
E all fluctuations responsible for chromatic aberra­

tion. 

The beam current has a maximum value for a=aopt, 

which is the solution of the cubic equation 

X3+UCHC.2X-d2/C.2=0 X =aop t2• (A4) 

This has one real solution since 

(AS) 

Practically, the working distance in an S.E.M. is not 
smaller than 0.5-1 cm, which assures the optimum 
conditions for the collection of secondary electrons, and 
the demagnification m of the objective lens is such that 
1/50< m< 1/20. Under these conditions, the computed 
value of C. and Cc are19 •20 : 5 cm<C.<lO cm and 
C~l cm. Concerning E, the present state of the art in 
electron emission systems and voltage-current stabiliza­
tion shows that ~1O-5 for accelerating voltages 
commonly used in S.E.M. The use of these numerical 
values in Eq. (AS) shows that the chromatic aberration 
has some influence for beam sizes of 15-30 A, but can be 
neglected for 40 A and up, and aopt= (d/C.)1/3. 

Then, since the only aberration of importance is C., 
the electron distribution within the beam at the object 
plane is given by the convolution between dg(r), the 
Gaussian image, which has a Gaussian distribution, and 
s (r), the impulse response of the objective lens due to 
the spherical aberration: 

1
+00 1+00 

d(r) = -00 -00 dg(r')s(r-r')dr'. (A6) 

Convolutions are difficult to perform and it is easier 
to use the linear system formalism where, on the fre­
quency domain, Eq. (A6) is transformed: 

(A7) 

where D((j), Dg((j), and S((j) are, respectively, the 
Fourier transforms of d(r), dyer), and s(r). The 
behavior of D((j) will give useful indications on the 
behavior of d(r). 

Dg ((j) is the Fourier transform of a Gaussian dis­
tribution and it is equal to: 

Dg((j) =Cte' exp( _RJ2w2/4). (AS) 

The computation of S((j) is easily performed. Let us 
consider (Fig. 6) a lens with a spherical aberration 
coefficient C. illuminated by a parallel electron beam. 
The plane P is the Gaussian plane situated at a distance 
L from the lens. An infinitely thin ring of radius rand 
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width dr is focussed into a point C whose coordinate a 
depends on C. and r. Then if N is the electron density at 
the entrance pupil of the lens and N (p) the electron 
density in the plane P' situated at a distance l' from P, 
the following relations hold: 

so that the probability of having more than one point 
OJ in !:.S can be considered negligible by comparison 
with the probabilities of having 0 or 1 point OJ in !:.S. 
According to the Poisson distribution, it is then possible 
to write: 

211'Nrdr=N(p)211'pdp (A9) Pr(O) =Pr(O point in !:.S) =exp( -d!:.S)rvl-d!:.S 

N (p) = [(L-a)2j (l' -a)2]N 

r= [(l'-a)/ (L-a)]p 

(AI0) 

(All) 

and S (w) IS then given by the Hankel transform 
of (AI0): 

Sew) =211'K [0 pN (p)Jo (wp)dp, (A12) 
o 

where K is the normalization factor. Introducing Eqs. 
(AI0) and (All) in (A9) gives 

S(w) = 211'NK {maxrJo(w ~=:r)dr. (A13) 

If the plan P' is in the plane of least confusion, and 
assuming an aperture a=rmOJ</L, Eq. (A13) is 

Sew) = 211'NK {max rJo (w ~;) dr (A14) 

and for the normalized function: 

Sew) = ~ i rmax 

rJo (w c.r:) dr. 
rmOJ< 0 4L 

(A1S) 

It is difficult in general to find an analytical ex­
pression for (A1S). However, as an example, Fig. 
(7) shows S(co) and D(co) for a lens with a focal 
distance f = 15 mm, a spherical aberration C. = 50 mm 
and an aperture diameter 2rmOJ<= 100 Jl. With these 
conditions, d.=7 A and, if dg =33 A, d~40 A. The 
Fourier transform Du' (co) of a Gaussian beam with a 
"diameter" 2Rl =40 A is also shown in Fig. (7). At a 
first approximation, it is then possible to consider the 
electron distribution on the sample as Gaussian, and 
the "equivalent surface area" for such a beam is 

11' R2 = 211' ~~ exp (~~:) rdr (A16) 

which gives the value of R = RI • 

APPENDIX B 

Let us consider in Fig. (8) an element !:.S of the 
surface of a plane (P) where the center Aj is such that 
AjM1=rl and A jM2=r2 and let us also consider two 
stochastic variables Xl and X2 taking values of 1 or 0 
depending on the fact that one of the points MI or M2 
are, respectively, covered or not by a circle Cj with a 
center OJ in !:.S. nl and ~ will then be the sums of Xl 
and X 2, respectively, extended to the totality of the 
plan P. It is always possible to choose!:.S small enough 

Pr(l) =Pr(l point in !:.S) =d!:.S exp( -d!:.S)rvd!:.S 

Pr(2) =Pr(2 points in !:.S) 

= [(d!:'S)2 exp ( -d!:.S) ]/2rvO. 

Because of the independency in the Poisson distribution 
of the disjoint, !:.S, Xl andX2 are independent stochastic 
variables and the characteristic function q,n (UI, U2) 
associated with (nl,~) is the product of the char­
acteristic functions q,(UI, U2) associated to (Xl, X 2) 
and relative to each !:.S. If !:.S is on the right side of 
Fig. 7, Table I can be written. It is now possible to 
find the characteristic function associated with the 
right side of (P): 

q,R(Ul, U2) = 1 + Pr(l) {p(rl)-l +eiU1[p(r2)- perl)] 

+ei(ul+u2>[1_ p (r2) J} 

=1+f(Ul,U2;rl,r2)!:.SR (Bl) 

and if !:.S is in the left side 

q,LCU}, UI) = 1 +f(U2, Ul; r2, rl)!:.SL. (B2) 

Since q,n(UI, U2) =nq,(ut, U2), it is easier to compute the 
second characteristic function if;(ut, U2) =lnq,(UI, U2) 
and 'IJIn CUt, U2) =l:.if; (Ul, U2). 

(

f(UI, U2; rI, r2) if !:.S is in [R]) 
if; CUI, U2) = (B3) 

f(U2, UI; r2, rl) if !:.S is in [L] 

The sum of all the elementary contributions if; (UI, U2) 
for all [P] is equal to: 

'IJIn (Ul, U2) =d ( (eiUl+eiu2_ 2) 1 [1- p (rI) ]!:.S 

+ (2ei(Ul+U2Leiu2) i [1- p(r2 )]!:.s), (B4) 

'. 
k/Z k/2 - --- -- -- -- - - - _ .. 

M. o M, 

L R 

FIG. 8. Computation of average brightness and autocorrelation 
function. 
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Since B=n(M)Bo, 

'l'B(Vl, V2) ='1'" (vIBo, V2BO)' 

Finally 
CPB(Vl, V2) = exp['I'B (VI, V2)]. (B5) 

The computation of the moments is then obtained. By 
application of the theorem of characteristic functions 

_ _ 1 dCPB I 1 d
2
CPB I B1=B2= -;-- (E(BIB2»= -:;--

2 dVi '1=.0=0 1 dVldV2 '1='1=0 

and 

B=ilBof [l-p(r)JilS 
all plane 

(B6) 

(B7) 

Concerning the determination of p (r), it has been 
assumed above that the image of one electron leaving a 
surface with a kinetic energy E is a circle of diameter 
2R=X/2, where X is the electron wavelength. Con­
sequently: 

R=A/ (V)1/2(A = 12.25/4, V = Volts, R=A). (B8) 

According to the experimental results21 the energy dis­
tribution of the secondary electrons can be approxi­
mated by a Rayley distribution 

N(E)dE= !!. exp(-Wj2u2)dE lEmax=u. (B9) 
u
2 .E = 1. 2Su 

An easy transformation with (B8) and (B9) gives the 
probability distribution of R: 

p(R)dR= (2A4/U2) (ljR5) exp(-A4j2u2R4)dR (BlO) 

TABLE 1. Computation of characteristic function. 

Number 
of OJ 
in as Xl X 2 exp[i (U1X1 +U2X2) ] Prob. 

0 0 0 Pr(0)~1-Pr(1) 

1 0 0 p(r1)Pr(1) 
1 1 0 exp(iu1) [p(r2) -P(r1) ]Pr(1) 
1 1 1 exp[i(u1+U2) ] [1-p(r2) ]P(r1) 
2 0 0 1 Pr(2)~0 

and 

per) = { p(R)dR. 
o 

(Bll) 

The integral in expression (B6) is easily obtained by 
noticing that it represents the sums of ilS weighed by 
the probability that ilS is inside a circle of radius r 
centered on the origin. The integral in expression 
(B7) represents the sums of ilS on the right side of 
plane P weighed by the probability that ilS is inside a 
circle of radius r centered on the point M 2• After a few 
transformations we have: 

B =il1r'Y02BO 

C(k) = 2dB02F(k, r) 

F(k, r) = ~: [?r-2 arcsin Gr)] 

X [1- 2A4 i r 

~ exp (- ~) dR] rdr 
u2 0 R5 2u2R4 ' 

(B12) 

(B13) 

(B14) 

where ro is the average value of the probability dis­
tribution (BlO). For the majority of metals Emax= 
u2=2eVandro=2.27 A. 
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